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1. Phys. A: Math. Gen. 26 (1993) 6575493 .  prinled in the UK 

On the complete solution of a perturbed topological conformal 
field theory at c = 3 

A Mukherjeet 
Department of Applied Mathematics and Thwrefical Physics, University of Cambridge. 
Cambridge CB3 9EW. UK 

Received 2 February 1993 

A b s h a d  The problem of determination of the ,¶or coodkares for a model of a topological 
conformal field theory Eorrespondng m the 'enisred' version of an N = 2 supermnfomd 
Landau-Ginzburg field theory with central charge c = 3 is analysed here. The model is 
characterized by a Landau-Ginzburg superpotential of the form: W = ax4+ a y 4 .  All possible 
relevant and marginal pturbations wilh their corresponding couplings (expreysod as functicm of 
the dimensionless Ratsoordinate), are added to the above superpotential to give us the perturbed 
topological field theory model. It is seen that the couplings can be completely determined (and 
nence also the dependence of the perturbations on the Rat wordinale) by imposing the conditions 
offlormss on the space of couplings of the permubed theay. 

1. Introduction and formulation of the problem 

Topological Landau-Ginzburg theories [1,2], i.e. the 'twisted' [3] version of the chiral 
primary subsector of the class of N = 2 superconformal field theories described by a 
Landau-Ginzburg superpotential, have been of much recent interest-not only in their own 
right [4], but also because they completely determine the modular dependence of the Yukawa 
couplings in string theories [51. Their study has considerably widened our knowledge of 
the interrelations of certain aspects of singularity theory [6] and Picard-Fuchs theory of 
differential equations for the periods of holomorphic forms [7, SI. The correlation functions 
of such topological models are completely determined by a prepotentkl (the free energy) 
3. In particular, there exists a special set of @ coordinates, ti, in terms of which the 
three-point correlation function c j j k  can be expressed [l] in the f a n  

where the associativity constraint implies [1,91 

(1.1) 

(1.2) 

Further, there exists a unique coordinate to such that the metric q (which has been used 
for the raising and lowering of indices in the above equation) on the space of the topological 
field theory, defined by the two-point function can be expressed as (11 

a 3 ~ @  '" - asatjato r, - -. 
t Email: A.Mukherjee@damtp.cbndg~~.uk 
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6516 A Mukherjee 

These coordintes f; are called flat when the two-point function qtj (defined above), is an 
invertible t-independent matrix-thus providing us with a natural, flat metric on the space 
of chiral primary fields [I, IO]. 

Let us now consider the following model of a topological conformal field theory (m) 
corresponding to a twisted version of an N = 2 superconfonnal field theory defined by the 
quasi-homogeneous superpotential [6,1 I] 

W d X )  = 4x4 + $y4 

where x(z .3  and y ( z , a  are Landau-zburg fields with U ( 1 )  charges given by 

1 4 x  = 4 y  = 7. 

The above superpotential corresponds to an N = 2 superconformal field theory (SCFT) with 
the central charge c given by [9] 

c = 6 c  - -q ;  = 3  
; G 1 

and with an underlying (associative) chiral ring structure which is essentially isomorphic to 
the multiplicative polynomial ring generated by the basis [91 

2 2 2  R = l l , x , Y , x 2 , x Y , Y 2 , X 2 Y , X Y  . X ~ Y  1. 

The dimension p of the ring is given by 191 

The Hessian of the above superpotential is given by 

It is clearly non-degenerate at the critical points of WO and coincides (apart from a numerical 
normalization factor) with the unique chiral field with the maximal U(1) charge. The U(1) 
charges of the elements of the basis are given by qa =' IO, 4, 4, i,,;, 4, $, 8,l). The 
unique chiral field with the maximal U(1) charge is x2y2. All correlatlon funchons of the 
unperturbed theory must obey the U ( 1 )  charge conservation. Thus a correlation function of 
the chiral primaries ( X ; ,  X i 2 . .  , . . . Xi")  will vanish identically, unless 

Among these correlation functions, of particular importance are the two- and three-point 
correlation functions. In our particular case, the two-point tinction (x2y2) ,  which is also 
identically equal to the expectation value of the chiral field with the highest U(1) charge, 
defines the metric q. 
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Let us now consider perturbing the superpotential in the most general way [l,  121. In 
order that the singularity structure of the superpotential is not altered. we must perturb the 
theory with fields with U(1) charges qi < 1 [9,13], and these therefore correspond to the 
relevant and marginal perturbations only. In the context of the N = 2 theory this implies 
that the perturbing fields must be linear combinations of ow basis fields in 77,. Introducing 
couplings ru for each of the fields X,, the most general form of the perturbed superpotential 
may be written as [l] 

where the polynomials X, form the basis of R. The perturbed fields 

= a wlar, 
satisfy the same multiplicative ring algebra [1,91 

The. coefficients Cij ,  form an associative ring algebra (which is, however, no longer 
nilpotent). One can now define the tensor 

Then it can be seen [l, IO]: 
(i) that the tensor q is non-degenerate and can be considered as defining a metric; and 
(ii) that the metric q has zero curvature, and hence there exists a canonical coordinate 

system (defined modulo linear transformations with constant coefficients) in which the metric 
is constant (and hence independent oft). 

The perturbed superpotential is no longer quasihomogeneous and hence now the U(1) 
charge conservation no longer holds. The U(1) charges associated with the couplings 
(r,, r2, . . . rg) are (1, :, :, 4.4, $, a. $, 0) respectively. The coupliig constant rg associated 
with the marginal perturbation xzy2 is dimensionless and is of special significance as it 
provides us with a dimensionless ‘flat’ coordinate, for which we introduce the special 
notation r9 = r. The perturbing coupliigs I. can be reganied as coordinates in the coupling 
constant space. The family of Tcm described by W in equation (1.3) corresponds to versal 
deformation in singularity theory, with tu being the parameters of deformation; the point 
(rlr fz, . . .4) = (0.0, . . .O) corresponding to the unperturbed theory. The coordinates tn 
form a distinguished basis in the space of couplings in that they correspond to the directions 
that are perturbations by the scaling operators. 

Now the choice of the perturbing parameters is not at all unique, as we could as well 
have chosen [ 101 another convenient set of parameters S,, and we consider the family of 
deformed theories characterized by 

9 

W(X. Sa) = WO + cs,xu. 
a=l 
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We can therefore trade the couplings ta for any other altemative choice. In particular a 
very convenient choice would be the so called jkr or special coordinates in the space of 
deformations of the theoly. Thus we may choose the elements as the set S, to be expressible 
in the form 

sa = g d t )  

where the g,  are unknown functions to be determined and t is the dimensionless f l a t  
coordinate defined earlier. In this way we can consider more general deformations (i.e. 
those which depend not only linearly on the couplings) of the superpotential, while at the 
same time characterize all these deformations by a single parameter t .  Imposing certain 
restrictions for these deformations to be ‘Rat’ these generic couplings g, can be completely 
and uniquely determined. We also note that, in accordance with our interpretation of the 
deformations, these couplings should all satisfy 

ga(t)-ta + W). 
Assuming the existence of a system of f l a t  coordinates, the deformation of the 
superpotential in terms of the f l a t  coordinates can be generically written as 

where the suitable forms of the couplings g, are to be determined. Explicitly, the form of 
the perturbed superpotential is given by 

W(X, 0 = $4 + ay4 + g1(t)l + gz(t)x + g 3 ( 0 y  + g4(t)x2 + g s ( 0 x y  + gs( t )yZ 

+ g,(t)X2Y + g*(t)xY* + €!9(t)XZY2. 

According to the formula the perkbed fields which stil l  satisfy the ring structure (though 
the ring now is no longer nilpotent) are given by 

Once again apart from the coupling gg(r) all the couplings have dimensions. In order to 
segregate this dimensional dependence, we introduce a dimensional parameters, with U(1) 
dimension 4 to pull out the dimensional dependence from the couplings and redefine the 
couplings in terms of dimensionless parameters a(t) (= g9(t) ) and for i = 1.2.. . .8, 
as follows 

The unique chiral primary field with the maximal U(1) charge is now given by 
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Note that this reduces to simply x2y2 in the free themy. Let us now consider the theory 
with only the marginal perturbation, by setting s = 0. The theory is then defined by the 
superpotential 

W(X, t )  = $4 + $ y 4  + $Y(t)x2y2. (1.6) 

The Hessian of the above superpotential at the criticality is given by 

h o b ,  Y )  9(1- C U ~ ) X O ~ Y O ~  

(where the subscript 0 refers to the values of the quantities at the critical points of W ) ,  and 
is clearly non-degenerate for a2#1. 

The Grothendieck metric [14], tl of the model is given in this case by the expectation 
value of the field with the maximal U(1) charge (1.5) (note that the superpotential defined 
above is still quasihomogeneous and hence U(1) charge conservation has to be satisfied), 
and can be calculated by the prescription due to Vafa (see [U]) as follows 

7l = ( 4 ( X ,  f)) = C " 2 Y 2 )  

(where the contours C, and Cy are large enough to contain all the zeroes of a") 

dx dy 1 

= a'(t)[l  + a2 + rY4 + a6 + . ..I 

The value of the Grothendieck metric would have been simply 1 (according to our 
normalizations) in the absence of any perturbationst. 

The action for a general N = 2 SCFT is given by 

S =  S a  d z d  @ K ( X , , s ? , ) +  (/d%d%W(Xi)+CC) 

where W is a holomorphic function of the c h i d  superfields Xi. The renormalization-pup 
(RG) flow for such a theory is driven solely by the superpotential W (the kinetic term 
providing only irrelevant perturbations). In fact, W is presumably not renonnalii-and 
hence provides us with an invariant of the RG flow to characterize such two-dimensional 
theories. We shall use this information when we discuss the path integral for such a model. 

t The solution m the equation a'(Of(1 - o12(r)) = I is given by a(t) = (a(0) + fanhi)/(l fa(0)Wr). 
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Let us now consider the superpotential f defined by 

(1.8) 
I 2 - 1  4 

- 
W(x,  y ,  w )  = Wo(x, y )  + iw - T X  + ay4 + $a(r)x2y2 + iW2 

where w(z,  7) is a Landau-Giizburg field of dimension 4. Note that the addition does not 
alter the central charge of the theory. In order to discuss some algebraic and geometric 
aspects of the above model, it is convenient to use a slightly different normalization of the 
fields. Accordingly we define 

The superpotential f now looks like 

fr~x,, xZ, x,) = x14 + xz4 + x~~ + a(t)xI2xzz. 

We can now introduce a system of projective coordinates (cl. h , . $ 3 )  for parametrizing the 
superpotentid I? as follows 

It may be noted that the coordinate $1 has dimension 1, while the coordinates 52 and 53 are 
dimensionless. 

The Jacobian J = la(Xl, X,, X3)/a(.5, tZ, $3)[ for the above transformation tums out 
to be a purely numerical factor. In terms of the homogeneous coordinates the superpotential 
becomes 

ii.(tl,cz.e3) = M I  +tZ4+hZ+~(r)t2i. 

The path integral for the model dehed  by the Landartcinzburg superpotential reduces 
to: 

j[dZX~l[dZXz1[dZX,lenp i dzzdzB~(X1, Xz, X3 1 U 
- t ~ ~ ~ z $ ~ l ~ ~ z ~ ~ l ~ ~ z ~ ~ l l ~ l z ~ ~ ~  ( i / @ i d z 6 W  + h4 f h2 + aO)t~~l).  

Performing the trivial integral over the $1 then leaves us with the delta functional 

/"[dZ5zl[dz$dW +h4 + 53' + a(t)h21 

In other words, we get a path integral over a complex onedimensional hypersurface, on 
the vanishing set of W evaluated in the projective coordinates (1, si, t 3 ) .  The delta function 
constraint imposes the equation 

1 + h4 + tiz + ~ ( t ) t z '  = o 
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or equivalently - 
W ( X ~ , X ~ , X ~ )  =I: = x ~ ~ + x ~ ~ + x ~ ~ + ~ ( ~ ) x ~ ~ x ~ ~ = o .  (1.9) 

Setting G = 0 in projective 2-space, we get a onedimensional torus, whose moduli are 
fixed by a. Further by virtue of the existence of a quantum Z4 symmetry of W the volume 
of the torus is also fixed to be 1 for all a. The coordimates (52, .5) can be regarded as a 
patch on a two-dimensional weightedprojective space WCP2 in which 

( X I ,  xZ, X ~ ) - ( ~ & ~ I ~ X  I, e % i / 4 ~ z ,  e W 2  X 3 ) .  (1.10) 

The curve defined in the weightedprojective space WCPz by equation (1.9) is obtained by 
the identification (1.10). The patch'obviously excludes the point XI = 0. The patch selected 
is, however, not unique as other patches can be obtained by coordinate transformations. 
Curves such as the one described above have been widely studied and classified. The 
curve defined by C has signature (g; e) = (1, CO, CO), where g lists the genus and ei, the 
orders of the branch points of the mrve in the weightedprojective space. C is essentially an 
orbifold of tori C/F, where l= is a discrete subgroup ISO(2) con_sisting of lattice translations 
together with SO(2) rotations by angles 2n/4. The equation W = 0 iythe relation among 
the ring of regular functions defined on a line bundle of degree (-2)E7 over a torus. All 
this is summarized by the statement that singularity theorists classify the superpotential 
W(X1, Xz, X3), (with the non-degeneracy condition a2#4) as belonging to the modality-1 
singularity type E7 or Xg type [6]; the Landau-Ginsburg superpotential 

G(x,, xZ,) = xI4 + xZ4 + a ( t ) ~ ~ ~ ~ ~ ~  

being equivalent to the orbifold S0(4)/&. 
Finally we make an important-observation: the physics described by the superpotential 

W(x ,  y) and the superpotential W ( x ,  y. w) = W(x,  y) + fw'. where the superpotential 
W(x ,y )  is given by equation (1.6) or by equation (1.4), are exactly identical. This is 
because. the Landau-Ginzburg field w appears only quadratically in the action and, hence, 
may be readily integrated out in the path integral to give us merely a constant phase factor. 

2. Explicit solution of the problem 

In order to obtain the f l a t  coordintes characterizing the most general deformation of the 
superpotential, we follow the method of Lerche et al (see [7]) which, in our present case, 
essentially reduces to. first constructing the function: 

where. t is the dimensionless flat coordinate, and s is a parameter of dimension which 
pulls out the dimensional dependence from the othm flat codmates. In general, it can be 
shown (for details see [7]) that the following equation holds: 

where si parametrizes a general, venal deformation of the superpotential; our problem is 
now reduced to now finding the relation between these general coordinates si and the flat 
coordinates ti. (xu, above is a polynomial basis for the chiral ring.) The Cjj' are the same 
as the structure constants of the ring, while r is essentially the Gauss-Mannin connection. 
Flat coordinates are determined by the requirement that r = 0 in the above equation. 
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2.1. Determination of the marginal coupling (Y 

For the first part of our calculation, where we wish to solve for the coupling of the 
marginal peaurbation, it suffices to concentrate only on the s = 0 piece of our perturbed 
superpotential. Accordingly, we construct our function U@, 0) as 

where, as usual, [dx] = dxl A dx’ A . .  . A dx” and W = W(x, y, t ,  s = 0) is the perturbed 
superpotential, perturbed by the marginal perturbation, and is explicitly given by 

(2.2) w = ax 1 4  + 4y4 + $Y(t)xZy2 

where a2#l from the criterion of non-degeneracy of W. We want to solve for the coupling 
a(t) by requiring the connection r to be flat. From the above definition, we readily obtain 
the equation 

a2 4” 1 
- U ( f , O )  = -u(t,o)+(--l)”+lr(A+1) [dx]-(qW”+2q‘W‘) 
at2 4 j WA+1 

1 + (-1)”’Zr(A +2) IdxI+q(W’)2 ! 
where all primes refer to derivatives with respect to the dimensionless parameter t .  
The flatness condition then essentially reduces to demanding the vanishing of the terms 
propofional to -l/W*+’ and those propoltional to U ( f ,  0). Using the explicit form of the 
perturbed superpotential (2.2), the above equation reduces to 

Integrating the last term successively by parts to reduce its degree, we obtain, after a 
straightforward but rather lengthy calculation, the following simple result: 

[&I- - + 2 - + 2  4‘ ( lyJ ] l  - z 4 a ! x y .  I 2  2 ./ w:+l[: 

In obtaining the above result we have utilized the following identities in our 
simplifications 
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We have also used the result 

for any vector VA, to throw away the surface terms. 

those proportinal to U(2, 0) should vanish separately, we obtain the following equations: 
Now from the above equation, demanding that the terms proportional to -l/W”+‘, and 

a” -+2-+2(-)=0 q’ aa’ 
a‘ 4 1 -a2 

- 4)’ + y-) aa = 0. 
q 4 1-a* 

The first of the above equations can be readily integrated to give 

We can here observe that the factor [q-*(t)] .  is essentially the conformal rescaling factor 
that takes the Grothendieck metic (see equation (1.7)). of W(x, y,  t )  to the flat metric. 

Using the above solution to eliminate q(t) between the above equations, we finally 
obtain the following Schwarzian differentid equation for the quantity a(t): 

1 3 + a z  
2(1 - a y  

[a; t )  

where the Schwanian derivative {; 1 is defined by 

(where a’ = da/dt etc). We therefore need to solve the above equation (2.10) to obtain the 
expression for a@). We note that if we trade the parameter a@) for a new variable e([) ,  
defined by 

a ( t )  = sin@([) (2.11) 

the above equation may be reduced to the form: 

{e; t) = -$&& where e‘ =de/& and e = e( t ) .  

Further, using the propedies of Schwarzian derivatives, the above may be written in the 
form: 

{ti e }  = :sec% where t = t ( e )  and t‘ = &/de etc. (2.12) 
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The above equation (2.12) may be readily integrated once to give 

w(e) = Y(O) + dxe-x'2sec2x x 
where Y (e) = t"(O)/t'(@). Finally integrating twice, we can obtain the following solution 
for t(e): 

t(8) = t(0) + ~'(0) 
where the function m(z) is defined by 

(2.13) 

(2.14) 

We note that the integrals are not reducible any further in terms of any known elementary 
functions. The task remaining is, therefore, to invert the above solution to obtain e(t) and 
then to finally solve for a(t) using the relation (21 1). 

Alternatively, in order to solve the above equation, we note that using the well known 
properties of Schwarzian derivatives, we can rewrite the equation (2.10) in the form 

(2.15) 

We also observe, in passing that using a m e r  change of variable to x = a-' we can 
reduce the above equation to the form 

3 3 1  1 1  
8x2 8 x(x  - 1)' 8 x 2 ( x  - ( t ; x )  = - + - (2.16) 

(where i = t ( x ) ) .  Further we can make an important technical observation here. If we 
trade the function a(t), for the function y( t )  defined by 

(ff' + 3)3 
Y ( t )  = 

27(1 - CY')' 
(2.17) 

then it can be seen that the Schwarzian equation for It; y }  tells us that y is given by the 
modular function, i.e. 

YO) = J(r)  (2.18) 

where r = (uf + b)/(ct + d )  for some U ,  b, c, d&, and ad - bc# and J = j /1728 is 
the absolute modular invariant function whose q-expansion is well known to be given by 
~ ( i  + 744 + . . .). Consequently, the definition (2.17) can be inverted and the solution 
for a&) can be written down in terms of the Schwilnian triangle functions [161. 

However, we shall work with the previous form of the Schwarzian equation (2.15). It 
can be seen that the general solution of equation (2.15) for t(a) can be expressed as the 
ratio of two hypergeometric functions. 

I 
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We know that a second-order differential equation of the form 

(2.19) 

where w = w(p) gives rise to the non-linear Schwanian differential equation 

E; 4 = %(P) - ~ / Z P ~ ( P )  - dp/dP (2.20) 

where E ( @ )  = w~OL)/wz(p) and w1.2 are the two linearly independent solutions of the 
equation (2.19). Using the above wisdom, it is easy to see that the general solution tfa) of 
equation (2.15) can be expressed as the ratio . .  

t(a) = uI(a)/w(a) (2.21) 

' - .  

where u;(a), i = 1.2 are the linearly independent solutions of the equation: 

(2.22) 

By a convenient change of variable to z = i(1 +U), the above equation can be recast into 
a readily recognizable form of a hypergeometric equation: 

(2.23) 

whose solutions are given by the hypergeometric function F($, 4; 1.2). 

2.2. Determinution of the relevant couplings @; 

Next we proceed to systematically determine the couplings @i(f) ,  for i = 1,2, . . . ,8. To 
solve for the couplings we must consider the complete form of the perturbed superpotential. 
Thus OUT function U(t ,  s) will now be given by 

.. 
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To solve for the couplings &(z) and &(t), we consider the s = 0 bit of the expression for 
a2U/atas, which is given by 

1 
= (-l)A+lr(A+ 1) JI&IW(d8I +48;)x2Y 

J 
s 

1 + (-1Y+1r(A+ 1) tdx1-(4’&+ s8;)xY2 

1 1 1 3 3  + (-l)A+2r(A + 2) tdxlw”+z(hx + 8zy)pa  x Y . 

Once again using the identity (2.5) to integrate by parts the last term, we obtain, after 
some elaborate simplifications, 

The conditions determining the couplings A(t) and &(t), therefore require 

(2.25) 

(2.26) 

On substituting the value of q(t)  from equation (2.9), the above equations may be 
readiiy solved to give the couplings: 

81 ( r )  = CI tCuW - a*)~’’~  (2.27) 

pz(t) = cz[a‘2(1 - a * ) ~ “ ~  (2.28) 

where CI and C2 are constants. 
In order to determine the couplings p3(t). @4( t )  and h(t), we have to proceed almost 

exactly in the same way, except that now we have to consider the s = 0 piece of azU/as2. 
Carrying out the explicit calculations we get 
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Integrating the last term by parts we finally obtain and after setting s = 0, throughout 
and collecting the similar terms, we get 

where we have made use of the identities 

(2.30) 

and some of the other previously stated identities to simplify some of the intermediate steps. 
The couplings are therefore determined by the equations: 

Bs + (-) W I &  = 0. 

(2.32) 

(2.33) 

(2.34) 

On substituting the values of the couplings and &(t) already obtained (see equation 
(2.27), (2.28)). we may readily solve the above three equations to give us the following 
values of the three couplings: 

B3(t) = (e22 - (YC12)[a’(l - (Y 2 ) -l/zl (2.35) 

12.36) 

(2.37) 

Finally, we come to the question of determining the remaining couplings @6(t ) ,  Bdt) 
and B&). Here, the calculations become much more tedious as we have to consider the 
pieces linear and quadratic in s in the expression for a2U/as2. It may be remarked that 
even though the terms independent of s in the expansion of azU/as2 would finally vanish 
as a consequence of the choice of our couplings B&), Bh( t )  and B5(r), we cannot throw 
away all such terms from the very beginning. This caution is needed because in calculating 
the couplings . . . B5(t), we have made use of several identities in integrating by parts 
some of the terms. In all such cases, we have always thrown away all sdependent terms. 

2 -l/zl )!?4(t) = (Cl2 - crG2)[a’(l - (Y ) 

&O) = -rlCICl[aa‘(l - (Y3-1’21. 
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Now, however, we have to consider all s-dependent terms which may have arisen out of 
partial integration in intermediate steps. 

We therefore explain our calculations in some more detail in this part of our discussion. 
Carrying out the computations explicitly, we have 

a2 
- -u( t ,s )  =(-l)A+1r(A+ 1) 
as2 

x / t W + $ B 3 X 2 +  9 

s 
B4YZ + Bsxy + S B S n  + s h y  + y B S l  

4 + (-l)A+2r(A + 2 )  [drl, , ,z[Blx~Y + Bzxy2 + S&X2 + SB4Y2 + sB5xy 

+ ;s2psx + 4S2hY + ;s3/!?s12. 

Expanding out, and keeping terms up to quadratic order in s, we have 
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1 - .y4 - 2&.2y - sS1x3y 

where in obtaining the above equation, we have considered terms that are at most of 
quadratic order in s, and have also made use of the following two identities to rewrite 
some of the terms in a form amenable to integration by parts: 

3 ] (2.38) (i) axzy3 = [xy - - x4y - 2s81x2y2 - spzxy + ~ ( s  ) . . . 

(2.39) 

aw 
ax 

1 - xy4 - 2.&xZy2 - 8b1.x3y + O(s2). . . . 
After some elaborate simplifications, (some of the details are discussed in the appendix), 
we finally have the following result. 
' The piece linear in s in a2U/asz is given by 

(;!:) + 
818z2(5+k2) - 3 ~ 8 1  - -  

(1 - a2)2 

The couplings are completely determined by the conditions: 

Using the values of the couplings pl ( t ) ,  . . ., p ~ ( t ) ,  the above equations can therefore be 
solved to give us the following vaIues of the couplings: 

86@) =G(a) t 3/2 ( 1 - a2)-%4 [3C,2(k* - 1)  - aGZ1 

&(t) = cI(a')3/2(1 - a2)-5'/4[3Cz2(2a2 - 1) - ~ Y C I ~ ] .  

(2.42) 

(2.43) 
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Hence at the end of the day, we have the following complete list of all the relevant 
couplingsompletely determined as functions of the dimensionless flat coordinate t: 

(2.44) 

(2.45) 

2 114 
B l ( 0  = cl[an(l -a )I 
~ ( t )  = G [ ~ ~ ( I  - a2)11/4 

2 -lP1 &(t) = (e22 - aC12)[a’(l -a ) 

84(0 = (Cl2 - aG2)ta’(l -a 1 

M t )  = 4 1 M a a ‘ ( l  -a ) 

p&) = &(a‘)3p(l - a2)-5’4[3C12(2a2 - 1) -aG2] 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

It can be verified that for the above choice of couplings, the Gauss-Manin connection 
r is completely flat All the couplings being completely determined, the free energy 3 of 
the system can now be obtaind. hence all the correlation functions of the perturbed as well 
as the unperturbed theory can be computed (since the free energy 3 acts as a generator 
of the correlation functions of the theory [ l ] ) .  The model can thus be considered as being 
completely solved. 

2 -1/2 1 
2 -w 1 

act) = c1(af)3/2(1 - a 2 ) - 5 / 4 [ 3 ~ 2 ( ~ 2  - I) - acI21. 

Appendix 

In obtaining the expressions for the terms linear and quadratic in s in the expansion of 
a2U/as2, we have to rewrite some of the terms in a form which can be readily integrated 
by p m  in order to reduce its degree. Thus, for example, we can rewrite one of the terms 
as follows 

where we have made use of the identity 

( I - a ) x y  = [ x y  2(%) - a x 2 y ( $ )  +s(ap1x4y-p2xy) 
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The term -x2y4/Wh+2 can also be similarly reduced. Then again, using the identity 

(1-ff2)x3y3= [ x 3 ( 3  + Y 3 ( 5 )  - ( ( a x ) ( a r ) + 3 s a ( ~ l x ~ y ~ + ~ 2 x ~ y ~ )  aw aw 

2 + s 4s4 + 2az)x~3 + s z ( ~ p 3  + 2p12)x3y 

1 + s2(ff85 + 581h)X2y2 + 0(s3) .  . . (A.3) 

we can reduce one of the other expressions in the following way: 

[dxi-2qpla2y3 1 

= ( - ~ ) ~ + ~ r ( k + i )  248182 1 

x (-1)”+Zr(A+2) 1 [dx] ( w”’2 2qp1fiZ) - [3Sa(pIx3y2 + p2Xzy3) 
1 -ffz 

+ s2m4 + 2 & 2 ) x ~ 3  + s2(u& + 2,312)~3y 

+S2(ff8s + 5B1&)X2y2 + 0(s3). . .]. (-4.4) 

Adding up all the contributions, and keeping all terms to quadratic order in s, we see that 
the terms independent of s, in fact, cancel out by virtue of ow choice of the couplings 
j33,84, 85. Integrating by parts the remaining terms, we then have 



In obtaining the above results, we have dropped all terms containing -szxy3 and -szx3y, 
as use of the identities: 

(ii) (I  - u2)x3y =ax ( y ) - Y ( ~ ) + a ( s )  - ... 

tell us that the contributions from such terms vanish on partial integration. 
The final result follows by carrying out similar reduction procedures for the other terms. 

A few other important identities that we shall require in our simplifications are listed below. 

- n4y - 2 s ~ ~ x 2 y 2  - s&xy3 +o(sZ). . . 

- x y 4  - 2 ~ , % x ~ y ~  - sblx3y + 0(s2). . . 

(A.8 

(A.9) 

(A.10) 

(iv) (1 - 4 x y 4  = xy  ( y )  - - a y z ( g )  - s ~ ~ ~ ~ y - 2 s ~ x ~ y ~ + O ( s ~ ) . . .  . (A.11) 

( 6 )  (1 - a 2 ) x 4 y  = xy  - s&xy3 - 2s@Ix2y2 + O(sz). . . 

All these identities are constructed aiming at expressing the c h i d  fields with dimension > I, 
in terms of fields of lower dimensions (by pulling out factors of s), modulo the equations 
of motion (namely &,W = 0). 
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Corrigendum 

Quantum eigenfunctions in terms of periodic orbits of chaotic systems 
Agam 0 and Fishman S 1993 J.  Phys. A: Math. Gen. 26 2113-2137 

In this paper semiclassical expressions for the Wigner functions corresponding to eigenstates 
were obtained. Each of these consists of a contribution from classical periodic orbits 
as well as a smooth part. The main subject of the paper was the investigation of the 
contribution from the periodic orbits, and unfortunately the contribution of the smooth part 
was overlooked. Therefore several formulae that are presented in this paper should be 
corrected. Equation (3.24) should be replaced by a more accurate one, corresponding to 
equation (16) of Beny (1989). The various arguments leading to the main result, namely 
(3.64). still hold but a smooth term has to be added to this equation. The resulting correct 
equation is, 

where the first term is the smooth contribution while the second was obtained in the original 
paper. The smooth term depends on the Aily factor A(x,E,) that is just AP(z .E, )  
defined by (3.8) and on Ai@) that is the imaginary part of the sum on the RHS of (2.15). 
Consequently (3.63) for the smooth part should be disregarded. The equations derived 
from (3.64) should be corrected as well. A contribution resulting from the smooth term 
should be added to (4.3). The required integral of the Airy factor over the momenta is 
given by equations (23),(24) of Berry (1989). A smooth term ?e.%? 2ho,(E., should be added 
to the RHS of (5.2). The scar weight should be measured with reference to the smcoth 
background, and the contribution of the background should be subtracted f" the integral 
of W d z )  over the tube r p  which is of volume Tph on the energy surface. The quality 
Y p ( E d  = &Ap(&) still holds but it is no more qua l  to the integral in (5.4). A 
contribution 

7 

U =  - zAi(Ea) J dx A(x, EJU(x) 
h2A'(E,) 

should be added to the RHs of (5.10). Finally, a t em Rnd(E,)Ai(E,J should be added to 
the RHS of the sum rule (5.12). 

0305-M70193R26595+01$07.50 0 1993 IOP Publishing Ltd 6595 


